Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

cis-Dichloridobis(2-phenylpyridine-*kN*)-platinum(II)

Nobuto Yoshinari,* Naoki Kitani and Takumi Konno

Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Correspondence e-mail: nobuto@chem.sci.osaka-u.ac.jp

Received 25 October 2010; accepted 27 October 2010

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.014 Å; R factor = 0.039; wR factor = 0.076; data-to-parameter ratio = 18.4.

In the title complex, *cis*-[PtCl₂(C₁₁H₉N)₂], the Pt^{II} ion is situated in a slightly distorted square-planar environment coordinated by two N atoms from two 2-phenylpyridine ligands and two Cl atoms. The two pyridyl planes are inclined with dihedral angles of 59.1 (2) and 61.84 (19)° with respect to the PtCl₂N₂ plane. In the crystal, the complex molecules display inter- and intramolecular π - π stacking interactions, with centroid-centroid distances of 3.806 (5)–3.845 (5) Å, which form a one-dimensional column structure along the *a* axis.

Related literature

For an NMR study on the title compound, see: Pazderski *et al.* (2009). For the crystal structures of closely related metal complexes, see: Chi & Chou (2010); Evans *et al.* (2006); Mdleleni *et al.* (1995); Okada *et al.* (2001); Saito *et al.* (2010).

Experimental

Crystal data

 $[PtCl_2(C_{11}H_9N)_2]$ $M_r = 576.37$ Monoclinic, *Cc* a = 7.6457 (8) Å b = 18.0712 (19) Å c = 14.9876 (12) Å $\beta = 96.014$ (7)°

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\rm min} = 0.329, T_{\rm max} = 0.494$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.076$ S = 1.044488 reflections 244 parameters 2 restraints $V = 2059.4 (3) \text{ Å}^{3}$ Z = 4 Mo K\alpha radiation \mu = 7.08 mm⁻¹ T = 200 K 0.30 \times 0.05 \times 0.03 mm

9783 measured reflections 4488 independent reflections 3862 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.046$

H-atom parameters constrained $\Delta \rho_{max} = 1.71 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -1.44 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 2143 Friedel pairs Flack parameter: 0.010 (10)

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2006) and *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2622).

References

- Chi, Y. & Chou, P.-T. (2010). Chem. Soc. Rev. 39, 638-655.
- Evans, R. C., Douglas, P. & Winscom, C. J. (2006). Coord. Chem. Rev. 250, 2093–2126.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Mdleleni, M. M., Bridgewater, J. S., Watts, R. J. & Ford, P. C. (1995). Inorg. Chem. 34, 2334–2342.
- Okada, T., El-Mehasseb, I. M., Kodaka, M., Tomohiro, T., Okamoto, K. & Okuno, H. (2001). J. Med. Chem. 44, 4661–4667.
- Pazderski, L., Toušek, J., Sitkowski, J., Kozerski, L. & Szłyk, E. (2009). Magn.
- Reson. Chem. 47, 658–665. Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Saito, K., Sarukawa, Y., Tsuge, K. & Konno, T. (2010). Eur. J. Inorg. Chem. 25, 3909–3913.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2010). E66, m1499 [doi:10.1107/S160053681004393X]

cis-Dichloridobis(2-phenylpyridine-KN)platinum(II)

N. Yoshinari, N. Kitani and T. Konno

Comment

It has been well known that metal complexes with 2-phenylpyridinate (ppy = $C_{11}H_8N$) show intense photoluminescence, especially for Ir^{III} and Pt^{II} complexes (Evans *et al.*, 2006; Chi & Chou, 2010). Recently, we found that the Ir^{III} complex having both ppy and D-Hpen ligands, [Ir^{III}(ppy)₂(D-Hpen)] (D—H₂pen = *D*-penicillamine), readily reacts with Ag^I ion to give a luminescent S bridged Ir^{III}Ag^IIr^{III} trinuclear complex, [Ag{Ir(ppy)₂(D—H_{0.5}pen)}₂] (Saito *et al.*, 2010). We report herein the crystal structure of a platinum(II) complex with two monodentate 2-phenylpyridine ligands, [PtCl₂(C₁₁H₉N)₂] (I), which was accidentally obtained in the course of the reaction of [PtCl(ppy- $\kappa^2 N$,C)]₂ with 1-thio- β -D-glucose.

The molecular structure of (I) is shown in Fig. 1. In (I), the two pyridyl planes of 2-phenylpyridine ligands are tilted to the coordination plane of Pt1; each of the dihedral angles of the pyridyl unit with respect to the Pt1/N1/N2/Cl1/Cl2 plane is 59.1 (2)° for the N1/C1–C5 plane and 61.84 (19)° for the N2/C12–C16 plane. In each 2-phenylpyridine ligand, the pyridyl and phenyl rings are inclined with angles of 40.4 (2)° for the N1/C1–C5 and C6–C11 planes and 48.1 (2)° for the N2/C12–C16 and C17–C22 planes, allowing them to form a pair of intramolecular π - π stacking interactions with the closest separations of 3.201 (9) and 3.256 (9) Å. Moreover, the complex molecule contacts to the neighboring molecules through intermolecular π - π stacking interactions with the closest separations of 3.438 (10) and 3.389 (10) Å, giving a one-dimensional columnar structure along the *a* axis (Fig. 2).

Experimental

The reaction of $[PtCl(ppy)]_2$ with 1-thio- β -D-glucose sodium salt in ethanol/water (v/v = 4/1) gave a yellow solution. The reaction solution was evaporated to dryness and was recrystallized from hot ethanol to give a small amount of yellow needle crystals of (I).

Refinement

H atoms bonded to C atoms were placed at calculated positions and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. A view of molecular structure of (I), showing the atom-numbering scheme and 50% probability displacement ellipsoids.

Fig. 2. A view of the one-dimensional columnar structure formed along the *a* axis in (I).

cis-Dichloridobis(2-phenylpyridine-кN)platinum(II)

Crystal data	
$[PtCl_2(C_{11}H_9N)_2]$	F(000) = 1104
$M_r = 576.37$	$D_{\rm x} = 1.859 {\rm ~Mg~m}^{-3}$
Monoclinic, Cc	Mo <i>K</i> α radiation, $\lambda = 0.71075$ Å
Hall symbol: C -2yc	Cell parameters from 7887 reflections
<i>a</i> = 7.6457 (8) Å	$\theta = 3.1 - 27.4^{\circ}$
b = 18.0712 (19) Å	$\mu = 7.08 \text{ mm}^{-1}$
c = 14.9876 (12) Å	T = 200 K
$\beta = 96.014 \ (7)^{\circ}$	Needle, yellow
V = 2059.4 (3) Å ³	$0.30\times0.05\times0.03~mm$
Z = 4	

Data collection

Rigaku R-AXIS RAPID diffractometer	3862 reflections with $I > 2\sigma(I)$
Detector resolution: 10.000 pixels mm ⁻¹	$R_{\rm int} = 0.046$
ω scans	$\theta_{\text{max}} = 27.4^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995)	$h = -9 \rightarrow 9$
$T_{\min} = 0.329, T_{\max} = 0.494$	$k = -23 \rightarrow 23$
9783 measured reflections	$l = -17 \rightarrow 19$
4488 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H-atom parameters constrained
$wR(F^2) = 0.076$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0331P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{max} < 0.001$
4488 reflections	$\Delta \rho_{max} = 1.71 \text{ e } \text{\AA}^{-3}$

244 parameters

 $\Delta\rho_{min} = -1.44 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 2143 Friedel pairs

2 restraints

Primary atom site location: structure-invariant direct Flack parameter: 0.010 (10)

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

		1 1	1 1	1
	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Pt1	0.74923 (3)	0.137846 (14)	0.68733 (3)	0.01865 (8)
Cl1	0.6380 (6)	0.14739 (18)	0.8241 (2)	0.0380 (9)
Cl2	0.9250 (3)	0.03890 (12)	0.73490 (14)	0.0347 (5)
N1	0.6118 (9)	0.2302 (4)	0.6440 (4)	0.0241 (16)
C1	0.6562 (11)	0.2917 (5)	0.6883 (6)	0.027 (2)
H1	0.7275	0.2878	0.7440	0.033*
C2	0.6038 (13)	0.3623 (5)	0.6577 (7)	0.036 (2)
H2	0.6377	0.4053	0.6916	0.044*
C3	0.5000 (13)	0.3672 (6)	0.5756 (8)	0.040 (3)
Н3	0.4642	0.4140	0.5513	0.049*
C4	0.4511 (12)	0.3037 (5)	0.5310 (6)	0.033 (2)
H4	0.3808	0.3061	0.4749	0.039*
C5	0.5031 (11)	0.2352 (5)	0.5670 (5)	0.0252 (19)
C6	0.4362 (13)	0.1654 (5)	0.5187 (6)	0.032 (2)
C7	0.4466 (13)	0.1573 (6)	0.4288 (6)	0.040 (3)
H7	0.4962	0.1954	0.3957	0.047*
C8	0.3829 (14)	0.0917 (7)	0.3855 (7)	0.049 (3)
H8	0.3868	0.0860	0.3228	0.059*
C9	0.3158 (14)	0.0368 (6)	0.4340 (8)	0.053 (3)
Н9	0.2755	-0.0074	0.4042	0.064*
C10	0.3043 (13)	0.0433 (6)	0.5251 (8)	0.046 (3)
H10	0.2548	0.0052	0.5582	0.055*
C11	0.3698 (12)	0.1092 (5)	0.5664 (6)	0.032 (2)
H11	0.3677	0.1148	0.6293	0.039*
N2	0.8432 (15)	0.1270 (4)	0.5656 (7)	0.017 (2)
C12	0.7948 (10)	0.0630 (4)	0.5202 (5)	0.0176 (17)
H12	0.7352	0.0254	0.5493	0.021*
C13	0.8316 (11)	0.0526 (5)	0.4328 (5)	0.025 (2)
H13	0.7997	0.0076	0.4025	0.030*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\dot{A}^2)

supplementary materials

C14	0.9150 (11)	0.1079 (5)	0.3899 (5)	0.025 (2)
H14	0.9378	0.1022	0.3292	0.030*
C15	0.9638 (11)	0.1707 (5)	0.4360 (5)	0.0244 (19)
H15	1.0212	0.2091	0.4069	0.029*
C16	0.9313 (10)	0.1798 (5)	0.5246 (5)	0.0161 (17)
C17	0.9946 (11)	0.2464 (5)	0.5768 (5)	0.0215 (18)
C18	0.9717 (11)	0.3163 (5)	0.5396 (6)	0.030 (2)
H18	0.9115	0.3221	0.4812	0.036*
C19	1.0357 (14)	0.3774 (6)	0.5868 (9)	0.050 (3)
H19	1.0216	0.4253	0.5607	0.060*
C20	1.1213 (15)	0.3692 (6)	0.6731 (9)	0.052 (3)
H20	1.1631	0.4116	0.7063	0.063*
C21	1.1455 (12)	0.2999 (6)	0.7105 (6)	0.040 (3)
H21	1.2048	0.2947	0.7691	0.048*
C22	1.0845 (11)	0.2382 (5)	0.6636 (5)	0.0249 (19)
H22	1.1025	0.1903	0.6892	0.030*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	0.02321 (15)	0.01661 (13)	0.01658 (13)	0.0010 (4)	0.00416 (8)	0.0011 (3)
C11	0.054 (2)	0.044 (2)	0.0187 (15)	0.0007 (18)	0.0153 (13)	0.0000 (13)
Cl2	0.0444 (15)	0.0290 (13)	0.0301 (12)	0.0094 (11)	0.0017 (9)	0.0108 (9)
N1	0.018 (4)	0.029 (4)	0.026 (4)	0.006 (3)	0.004 (3)	0.000 (3)
C1	0.021 (5)	0.026 (5)	0.037 (5)	0.003 (4)	0.011 (4)	-0.004 (4)
C2	0.033 (6)	0.026 (5)	0.052 (6)	0.008 (5)	0.014 (4)	0.000 (4)
C3	0.028 (6)	0.025 (6)	0.070 (7)	0.015 (5)	0.016 (5)	0.004 (5)
C4	0.023 (5)	0.039 (6)	0.036 (5)	0.005 (5)	0.006 (4)	0.014 (4)
C5	0.021 (5)	0.026 (5)	0.031 (5)	-0.001 (4)	0.013 (3)	0.006 (4)
C6	0.040 (6)	0.027 (5)	0.027 (5)	0.011 (4)	0.000 (4)	0.003 (4)
C7	0.026 (5)	0.063 (8)	0.029 (5)	0.014 (5)	0.000 (4)	-0.001 (4)
C8	0.041 (7)	0.050 (7)	0.052 (6)	0.022 (6)	-0.019 (5)	-0.015 (6)
C9	0.031 (6)	0.037 (7)	0.085 (9)	0.011 (5)	-0.021 (6)	-0.019 (6)
C10	0.028 (6)	0.041 (7)	0.067 (8)	0.012 (5)	-0.007 (5)	0.004 (5)
C11	0.035 (6)	0.021 (5)	0.042 (6)	0.002 (4)	0.006 (4)	-0.015 (4)
N2	0.021 (5)	0.004 (4)	0.026 (6)	0.006 (3)	-0.001 (4)	0.002 (3)
C12	0.018 (4)	0.007 (4)	0.028 (4)	0.000 (3)	0.002 (3)	-0.005 (3)
C13	0.024 (5)	0.024 (5)	0.028 (5)	0.009 (4)	0.003 (3)	-0.008 (3)
C14	0.027 (5)	0.036 (5)	0.013 (4)	0.008 (4)	0.001 (3)	-0.002 (3)
C15	0.024 (5)	0.025 (5)	0.024 (5)	0.009 (4)	0.002 (3)	0.007 (4)
C16	0.014 (4)	0.018 (5)	0.017 (4)	-0.001 (4)	0.005 (3)	0.006 (3)
C17	0.020 (5)	0.020 (5)	0.026 (4)	-0.002 (4)	0.008 (3)	0.002 (3)
C18	0.024 (5)	0.021 (5)	0.045 (5)	0.001 (4)	0.007 (4)	0.004 (4)
C19	0.029 (6)	0.025 (6)	0.098 (10)	-0.004 (5)	0.018 (6)	0.007 (5)
C20	0.035 (6)	0.038 (7)	0.086 (9)	-0.020 (6)	0.019 (6)	-0.031 (6)
C21	0.032 (6)	0.058 (8)	0.032 (5)	-0.012 (5)	0.013 (4)	-0.022 (5)
C22	0.031 (5)	0.018 (5)	0.026 (5)	-0.001 (4)	0.009 (3)	-0.010 (3)

Geometric parameters (Å, °)

Pt1—N2	2.039 (10)	C10—H10	0.9500
Pt1—N1	2.041 (7)	C11—H11	0.9500
Pt1—Cl2	2.304 (2)	N2—C16	1.352 (11)
Pt1—Cl1	2.306 (4)	N2—C12	1.373 (11)
N1—C1	1.321 (11)	C12—C13	1.381 (11)
N1—C5	1.353 (10)	C12—H12	0.9500
C1—C2	1.400 (12)	C13—C14	1.381 (12)
C1—H1	0.9500	С13—Н13	0.9500
C2—C3	1.396 (15)	C14—C15	1.361 (12)
С2—Н2	0.9500	C14—H14	0.9500
C3—C4	1.360 (14)	C15—C16	1.386 (11)
С3—Н3	0.9500	C15—H15	0.9500
C4—C5	1.392 (12)	C16—C17	1.489 (11)
C4—H4	0.9500	C17—C18	1.385 (12)
C5—C6	1.515 (12)	C17—C22	1.414 (11)
C6—C7	1.366 (13)	C18—C19	1.374 (14)
C6—C11	1.370 (13)	C18—H18	0.9500
С7—С8	1.413 (15)	C19—C20	1.396 (16)
С7—Н7	0.9500	С19—Н19	0.9500
C8—C9	1.361 (16)	C20—C21	1.376 (15)
С8—Н8	0.9500	C20—H20	0.9500
C9—C10	1.383 (15)	C21—C22	1.374 (12)
С9—Н9	0.9500	C21—H21	0.9500
C10—C11	1.409 (13)	C22—H22	0.9500
C10—C11 N2—Pt1—N1	1.409 (13) 90.7 (3)	C22—H22 C6—C11—C10	0.9500 122.1 (9)
C10—C11 N2—Pt1—N1 N2—Pt1—Cl2	1.409 (13) 90.7 (3) 87.3 (3)	C22—H22 C6—C11—C10 C6—C11—H11	0.9500 122.1 (9) 118.9
C10—C11 N2—Pt1—N1 N2—Pt1—Cl2 N1—Pt1—Cl2	1.409 (13) 90.7 (3) 87.3 (3) 175.3 (2)	C22—H22 C6—C11—C10 C6—C11—H11 C10—C11—H11	0.9500 122.1 (9) 118.9 118.9
C10—C11 N2—Pt1—N1 N2—Pt1—Cl2 N1—Pt1—Cl2 N2—Pt1—Cl1	1.409 (13) 90.7 (3) 87.3 (3) 175.3 (2) 178.4 (3)	C22—H22 C6—C11—C10 C6—C11—H11 C10—C11—H11 C16—N2—C12	0.9500 122.1 (9) 118.9 118.9 119.4 (9)
C10—C11 N2—Pt1—N1 N2—Pt1—Cl2 N1—Pt1—Cl2 N2—Pt1—Cl1 N1—Pt1—Cl1	1.409 (13) 90.7 (3) 87.3 (3) 175.3 (2) 178.4 (3) 89.8 (2)	C22—H22 C6—C11—C10 C6—C11—H11 C10—C11—H11 C16—N2—C12 C16—N2—Pt1	0.9500 122.1 (9) 118.9 118.9 119.4 (9) 125.3 (7)
C10—C11 N2—Pt1—N1 N2—Pt1—Cl2 N1—Pt1—Cl2 N2—Pt1—Cl1 N1—Pt1—Cl1 Cl2—Pt1—Cl1	1.409 (13) 90.7 (3) 87.3 (3) 175.3 (2) 178.4 (3) 89.8 (2) 92.32 (11)	C22—H22 C6—C11—C10 C6—C11—H11 C10—C11—H11 C16—N2—C12 C16—N2—Pt1 C12—N2—Pt1	0.9500 122.1 (9) 118.9 118.9 119.4 (9) 125.3 (7) 115.0 (7)
C10—C11 N2—Pt1—N1 N2—Pt1—Cl2 N1—Pt1—Cl2 N2—Pt1—Cl1 N1—Pt1—Cl1 Cl2—Pt1—Cl1 Cl2—Pt1—Cl1 Cl2—Pt1—Cl1	1.409 (13) 90.7 (3) 87.3 (3) 175.3 (2) 178.4 (3) 89.8 (2) 92.32 (11) 118.4 (8)	C22—H22 C6—C11—C10 C6—C11—H11 C10—C11—H11 C16—N2—C12 C16—N2—Pt1 C12—N2—Pt1 N2—C12—C13	0.9500 122.1 (9) 118.9 118.9 119.4 (9) 125.3 (7) 115.0 (7) 120.9 (8)
C10—C11 N2—Pt1—N1 N2—Pt1—Cl2 N1—Pt1—Cl2 N2—Pt1—Cl1 N1—Pt1—Cl1 Cl2—Pt1—Cl1 Cl2—Pt1—Cl1 Cl—N1—C5 C1—N1—Pt1	1.409 (13) 90.7 (3) 87.3 (3) 175.3 (2) 178.4 (3) 89.8 (2) 92.32 (11) 118.4 (8) 115.5 (6)	C22—H22 C6—C11—C10 C6—C11—H11 C10—C11—H11 C16—N2—C12 C16—N2—Pt1 C12—N2—Pt1 N2—C12—C13 N2—C12—H12	0.9500 122.1 (9) 118.9 118.9 119.4 (9) 125.3 (7) 115.0 (7) 120.9 (8) 119.5
C10—C11 N2—Pt1—N1 N2—Pt1—Cl2 N1—Pt1—Cl2 N2—Pt1—Cl1 Cl2—Pt1—Cl1 Cl2—Pt1—Cl1 Cl2—Pt1—Cl1 Cl2—N1—C5 C1—N1—Pt1 C5—N1—Pt1	1.409 (13) 90.7 (3) 87.3 (3) 175.3 (2) 178.4 (3) 89.8 (2) 92.32 (11) 118.4 (8) 115.5 (6) 125.2 (6)	C22—H22 C6—C11—C10 C6—C11—H11 C10—C11—H11 C16—N2—C12 C16—N2—Pt1 C12—N2—Pt1 N2—C12—C13 N2—C12—H12 C13—C12—H12	0.9500 122.1 (9) 118.9 118.9 119.4 (9) 125.3 (7) 115.0 (7) 120.9 (8) 119.5 119.5
C10—C11 N2—Pt1—N1 N2—Pt1—Cl2 N1—Pt1—Cl2 N2—Pt1—Cl1 N1—Pt1—Cl1 Cl2—Pt1—Cl1 Cl2—Pt1—Cl1 Cl2—N1—C5 C1—N1—Pt1 C5—N1—Pt1 N1—C1—C2	1.409 (13) 90.7 (3) 87.3 (3) 175.3 (2) 178.4 (3) 89.8 (2) 92.32 (11) 118.4 (8) 115.5 (6) 125.2 (6) 123.5 (9)	C22—H22 C6—C11—C10 C6—C11—H11 C10—C11—H11 C16—N2—C12 C16—N2—Pt1 C12—N2—Pt1 N2—C12—C13 N2—C12—H12 C13—C12—H12 C12—C13—C14	0.9500 122.1 (9) 118.9 118.9 119.4 (9) 125.3 (7) 115.0 (7) 120.9 (8) 119.5 119.5 119.5 (8)
C10—C11 N2—Pt1—N1 N2—Pt1—Cl2 N1—Pt1—Cl2 N2—Pt1—Cl1 N1—Pt1—Cl1 Cl2—Pt1—Cl1 Cl2—Pt1—Cl1 C1—N1—C5 C1—N1—Pt1 C5—N1—Pt1 N1—C1—C2 N1—C1—H1	1.409 (13) 90.7 (3) 87.3 (3) 175.3 (2) 178.4 (3) 89.8 (2) 92.32 (11) 118.4 (8) 115.5 (6) 125.2 (6) 123.5 (9) 118.3	C22—H22 C6—C11—C10 C6—C11—H11 C10—C11—H11 C16—N2—C12 C16—N2—Pt1 C12—N2—Pt1 N2—C12—C13 N2—C12—H12 C13—C12—H12 C13—C12—H12 C12—C13—C14 C12—C13—H13	0.9500 122.1 (9) 118.9 118.9 119.4 (9) 125.3 (7) 115.0 (7) 120.9 (8) 119.5 119.5 119.5 (8) 120.2
C10—C11 N2—Pt1—N1 N2—Pt1—Cl2 N1—Pt1—Cl2 N2—Pt1—Cl1 Cl2—Pt1—Cl1 Cl2—Pt1—Cl1 C1—N1—C5 C1—N1—Pt1 C5—N1—Pt1 N1—C1—C2 N1—C1—H1 C2—C1—H1	1.409 (13) 90.7 (3) 87.3 (3) 175.3 (2) 178.4 (3) 89.8 (2) 92.32 (11) 118.4 (8) 115.5 (6) 125.2 (6) 123.5 (9) 118.3 118.3	C22—H22 C6—C11—C10 C6—C11—H11 C10—C11—H11 C16—N2—C12 C16—N2—Pt1 C12—N2—Pt1 N2—C12—C13 N2—C12—H12 C13—C12—H12 C12—C13—C14 C12—C13—H13 C14—C13—H13	0.9500 122.1 (9) 118.9 118.9 119.4 (9) 125.3 (7) 115.0 (7) 120.9 (8) 119.5 119.5 119.5 (8) 120.2 120.2
C10-C11 $N2-Pt1-N1$ $N2-Pt1-Cl2$ $N1-Pt1-Cl2$ $N2-Pt1-Cl1$ $Cl2-Pt1-Cl1$ $Cl2-Pt1-Cl1$ $Cl-N1-C5$ $Cl-N1-Pt1$ $C5-N1-Pt1$ $N1-C1-C2$ $N1-C1-H1$ $C2-C1-H1$ $C3-C2-C1$	1.409 (13) 90.7 (3) 87.3 (3) 175.3 (2) 178.4 (3) 89.8 (2) 92.32 (11) 118.4 (8) 115.5 (6) 125.2 (6) 123.5 (9) 118.3 118.3 117.6 (10)	C22—H22 C6—C11—C10 C6—C11—H11 C10—C11—H11 C16—N2—C12 C16—N2—Pt1 C12—N2—Pt1 N2—C12—C13 N2—C12—H12 C13—C12—H12 C13—C12—H12 C12—C13—H13 C14—C13—H13 C15—C14—C13	0.9500 122.1 (9) 118.9 118.9 119.4 (9) 125.3 (7) 115.0 (7) 120.9 (8) 119.5 119.5 119.5 (8) 120.2 120.2 118.9 (8)
C10—C11 N2—Pt1—N1 N2—Pt1—Cl2 N1—Pt1—Cl2 N2—Pt1—Cl1 N1—Pt1—Cl1 Cl2—Pt1—Cl1 Cl2—Pt1—Cl1 C1—N1—C5 C1—N1—Pt1 C5—N1—Pt1 N1—C1—C2 N1—C1—H1 C2—C1—H1 C3—C2—C1 C3—C2—H2	1.409 (13) 90.7 (3) 87.3 (3) 175.3 (2) 178.4 (3) 89.8 (2) 92.32 (11) 118.4 (8) 115.5 (6) 125.2 (6) 123.5 (9) 118.3 118.3 117.6 (10) 121.2	C22—H22 C6—C11—C10 C6—C11—H11 C10—C11—H11 C16—N2—C12 C16—N2—Pt1 C12—N2—Pt1 N2—C12—C13 N2—C12—H12 C13—C12—H12 C13—C12—H12 C12—C13—C14 C12—C13—H13 C14—C13—H13 C15—C14—C13 C15—C14—C13 C15—C14—H14	0.9500 122.1 (9) 118.9 118.9 119.4 (9) 125.3 (7) 115.0 (7) 120.9 (8) 119.5 119.5 119.5 (8) 120.2 120.2 118.9 (8) 120.5
C10-C11 $N2-Pt1-N1$ $N2-Pt1-Cl2$ $N1-Pt1-Cl2$ $N2-Pt1-Cl1$ $Cl2-Pt1-Cl1$ $Cl2-Pt1-Cl1$ $Cl-N1-C5$ $C1-N1-Pt1$ $C5-N1-Pt1$ $N1-C1-C2$ $N1-C1-H1$ $C2-C1-H1$ $C3-C2-C1$ $C3-C2-H2$ $C1-C2-H2$	1.409 (13) 90.7 (3) 87.3 (3) 175.3 (2) 178.4 (3) 89.8 (2) 92.32 (11) 118.4 (8) 115.5 (6) 125.2 (6) 123.5 (9) 118.3 118.3 117.6 (10) 121.2 121.2	C22—H22 C6—C11—C10 C6—C11—H11 C10—C11—H11 C16—N2—C12 C16—N2—Pt1 C12—N2—Pt1 N2—C12—C13 N2—C12—H12 C13—C12—H12 C12—C13—C14 C12—C13—H13 C14—C13—H13 C15—C14—H14 C13—C14—H14	0.9500 122.1 (9) 118.9 118.9 119.4 (9) 125.3 (7) 115.0 (7) 120.9 (8) 119.5 119.5 (8) 120.2 120.2 120.2 118.9 (8) 120.5 120.5
C10—C11 N2—Pt1—N1 N2—Pt1—Cl2 N1—Pt1—Cl2 N2—Pt1—Cl1 Cl2—Pt1—Cl1 Cl2—Pt1—Cl1 Cl2—Pt1—Cl1 C1—N1—C5 C1—N1—Pt1 C5—N1—Pt1 N1—C1—C2 N1—C1—H1 C2—C1—H1 C3—C2—C1 C3—C2—H2 C1—C2—H2 C1—C2—H2 C4—C3—C2	1.409 (13) 90.7 (3) 87.3 (3) 175.3 (2) 178.4 (3) 89.8 (2) 92.32 (11) 118.4 (8) 115.5 (6) 125.2 (6) 123.5 (9) 118.3 117.6 (10) 121.2 121.2 118.8 (9)	C22—H22 C6—C11—C10 C6—C11—H11 C10—C11—H11 C16—N2—C12 C16—N2—Pt1 N2—C12—C13 N2—C12—H12 C13—C12—H12 C13—C12—H12 C12—C13—C14 C12—C13—H13 C14—C13—H13 C15—C14—H14 C13—C14—H14 C14—C15—C16	0.9500 122.1 (9) 118.9 118.9 119.4 (9) 125.3 (7) 115.0 (7) 120.9 (8) 119.5 119.5 (8) 120.2 120.2 118.9 (8) 120.5 120.5 120.5 121.2 (8)
$\begin{array}{c} C10C11 \\ N2Pt1N1 \\ N2Pt1Cl2 \\ N1Pt1Cl2 \\ N2Pt1Cl1 \\ Cl2Pt1Cl1 \\ Cl2Pt1Cl1 \\ Cl2Pt1Cl1 \\ ClN1C5 \\ ClN1Pt1 \\ C5N1Pt1 \\ N1ClC2 \\ N1ClH1 \\ C2ClH1 \\ C3C2Cl \\ C3C2H2 \\ C1C2H2 \\ C4C3C2 \\ C4C3H3 \\ \end{array}$	1.409 (13) 90.7 (3) 87.3 (3) 175.3 (2) 178.4 (3) 89.8 (2) 92.32 (11) 118.4 (8) 115.5 (6) 125.2 (6) 123.5 (9) 118.3 117.6 (10) 121.2 121.2 118.8 (9) 120.6	C22—H22 C6—C11—C10 C6—C11—H11 C10—C11—H11 C16—N2—C12 C16—N2—Pt1 C12—N2—Pt1 N2—C12—C13 N2—C12—H12 C13—C12—H12 C13—C12—H12 C13—C12—H12 C12—C13—C14 C12—C13—H13 C14—C13—H13 C15—C14—C13 C15—C14—H14 C13—C14—H14 C14—C15—C16 C14—C15—H15	0.9500 122.1 (9) 118.9 118.9 119.4 (9) 125.3 (7) 115.0 (7) 120.9 (8) 119.5 119.5 119.5 (8) 120.2 120.2 118.9 (8) 120.5 120.5 120.5 121.2 (8) 119.4
C10-C11 $N2-Pt1-N1$ $N2-Pt1-Cl2$ $N1-Pt1-Cl2$ $N2-Pt1-Cl1$ $Cl2-Pt1-Cl1$ $Cl2-Pt1-Cl1$ $Cl-N1-C5$ $C1-N1-Pt1$ $C5-N1-Pt1$ $N1-C1-C2$ $N1-C1-H1$ $C2-C1-H1$ $C3-C2-C1$ $C3-C2-H2$ $C4-C3-H2$ $C4-C3-H3$ $C2-C3-H3$	1.409 (13) 90.7 (3) 87.3 (3) 175.3 (2) 178.4 (3) 89.8 (2) 92.32 (11) 118.4 (8) 115.5 (6) 125.2 (6) 123.5 (9) 118.3 117.6 (10) 121.2 121.2 118.8 (9) 120.6 120.6	C22—H22 C6—C11—C10 C6—C11—H11 C10—C11—H11 C16—N2—C12 C16—N2—Pt1 C12—N2—Pt1 N2—C12—C13 N2—C12—H12 C13—C12—H12 C13—C12—H12 C12—C13—C14 C12—C13—H13 C14—C13—H13 C15—C14—H14 C15—C14—H14 C14—C15—C16 C14—C15—H15 C16—C15—H15	0.9500 122.1 (9) 118.9 118.9 119.4 (9) 125.3 (7) 115.0 (7) 120.9 (8) 119.5 119.5 (8) 120.2 120.2 118.9 (8) 120.5 120.5 121.2 (8) 119.4 119.4
C10—C11 N2—Pt1—N1 N2—Pt1—Cl2 N1—Pt1—Cl2 N2—Pt1—Cl1 Cl2—Pt1—Cl1 Cl2—Pt1—Cl1 Cl3—Cl3—Cl4 Cl3—C2—Cl Cl3—C2—H2 Cl4—Cl3—H3 C2—Cl3—H3 C2—Cl3—H3 C3—C4—C5	1.409 (13) 90.7 (3) 87.3 (3) 175.3 (2) 178.4 (3) 89.8 (2) 92.32 (11) 118.4 (8) 115.5 (6) 125.2 (6) 123.5 (9) 118.3 117.6 (10) 121.2 121.2 118.8 (9) 120.6 120.6 120.5 (9)	C22—H22 C6—C11—C10 C6—C11—H11 C10—C11—H11 C16—N2—C12 C16—N2—Pt1 C12—N2—Pt1 N2—C12—C13 N2—C12—H12 C13—C12—H12 C13—C12—H12 C13—C13—H13 C14—C13—H13 C15—C14—C13 C15—C14—H14 C13—C14—H14 C14—C15—C16 C14—C15—H15 N2—C16—C15	0.9500 122.1 (9) 118.9 118.9 119.4 (9) 125.3 (7) 115.0 (7) 120.9 (8) 119.5 119.5 (8) 120.2 120.2 120.2 118.9 (8) 120.5 120.5 121.2 (8) 119.4 119.4 120.0 (9)
C10-C11 $N2-Pt1-N1$ $N2-Pt1-Cl2$ $N1-Pt1-Cl2$ $N2-Pt1-Cl1$ $Cl2-Pt1-Cl1$ $Cl2-Pt1-Cl1$ $Cl2-Pt1-Cl1$ $Cl-N1-C5$ $Cl-N1-Pt1$ $C5-N1-Pt1$ $N1-C1-C2$ $N1-C1-H1$ $C2-C1-H1$ $C3-C2-C1$ $C3-C2-H2$ $C1-C2-H2$ $C4-C3-C2$ $C4-C3-H3$ $C2-C3-H3$ $C3-C4-C5$ $C3-C4-H4$	1.409 (13) 90.7 (3) 87.3 (3) 175.3 (2) 178.4 (3) 89.8 (2) 92.32 (11) 118.4 (8) 115.5 (6) 125.2 (6) 123.5 (9) 118.3 117.6 (10) 121.2 121.2 118.8 (9) 120.6 120.5 (9) 119.8	C22—H22 C6—C11—C10 C6—C11—H11 C10—C11—H11 C16—N2—C12 C16—N2—Pt1 N2—C12—Pt1 N2—C12—C13 N2—C12—H12 C13—C12—H12 C13—C12—H12 C12—C13—H13 C14—C13—H13 C15—C14—C13 C15—C14—H14 C13—C14—H14 C13—C14—H14 C13—C14—H14 C14—C15—C16 C14—C15—H15 N2—C16—C15 N2—C16—C15 N2—C16—C17	0.9500 122.1 (9) 118.9 118.9 119.4 (9) 125.3 (7) 115.0 (7) 120.9 (8) 119.5 119.5 119.5 (8) 120.2 120.2 118.9 (8) 120.5 120.5 121.2 (8) 119.4 119.4 120.0 (9) 118.8 (8)
C10-C11 $N2-Pt1-N1$ $N2-Pt1-C12$ $N1-Pt1-C12$ $N2-Pt1-C11$ $C12-Pt1-C11$ $C12-Pt1-C11$ $C1-N1-C5$ $C1-N1-Pt1$ $C5-N1-Pt1$ $N1-C1-C2$ $N1-C1-H1$ $C2-C1-H1$ $C3-C2-C1$ $C3-C2-H2$ $C1-C2-H2$ $C4-C3-C2$ $C4-C3-H3$ $C2-C3-H3$ $C3-C4-C5$ $C3-C4-H4$	1.409 (13) 90.7 (3) 87.3 (3) 175.3 (2) 178.4 (3) 89.8 (2) 92.32 (11) 118.4 (8) 115.5 (6) 125.2 (6) 123.5 (9) 118.3 117.6 (10) 121.2 121.2 118.8 (9) 120.6 120.6 120.5 (9) 119.8 119.8	C22—H22 C6—C11—C10 C6—C11—H11 C10—C11—H11 C16—N2—C12 C16—N2—Pt1 C12—N2—Pt1 N2—C12—C13 N2—C12—H12 C13—C12—H12 C13—C12—H12 C12—C13—C14 C12—C13—H13 C14—C13—H13 C15—C14—C13 C15—C14—H14 C13—C14—H14 C14—C15—C16 C14—C15—H15 N2—C16—C15 N2—C16—C17 C15—C16—C17	0.9500 122.1 (9) 118.9 118.9 119.4 (9) 125.3 (7) 115.0 (7) 120.9 (8) 119.5 119.5 119.5 (8) 120.2 120.2 118.9 (8) 120.5 120.5 121.2 (8) 119.4 119.4 120.0 (9) 118.8 (8) 121.2 (8)

supplementary materials

N1C5C6	119.9 (8)	C18—C17—C16	120.4 (7)
C4—C5—C6	119.1 (8)	C22—C17—C16	119.8 (7)
C7—C6—C11	119.9 (9)	C19—C18—C17	120.2 (9)
C7—C6—C5	120.6 (9)	С19—С18—Н18	119.9
C11—C6—C5	119.6 (8)	C17—C18—H18	119.9
C6—C7—C8	119.3 (10)	C18—C19—C20	119.9 (10)
С6—С7—Н7	120.3	С18—С19—Н19	120.0
С8—С7—Н7	120.3	С20—С19—Н19	120.0
C9—C8—C7	119.9 (10)	C21—C20—C19	120.3 (10)
С9—С8—Н8	120.1	С21—С20—Н20	119.8
С7—С8—Н8	120.1	С19—С20—Н20	119.8
C8—C9—C10	122.1 (10)	C22—C21—C20	120.4 (9)
С8—С9—Н9	118.9	C22—C21—H21	119.8
С10—С9—Н9	118.9	C20—C21—H21	119.8
C9—C10—C11	116.7 (11)	C21—C22—C17	119.5 (9)
С9—С10—Н10	121.7	C21—C22—H22	120.3
C11—C10—H10	121.7	C17—C22—H22	120.3
N2—Pt1—N1—C1	-118.5 (6)	N1—Pt1—N2—C16	55.4 (9)
Cl1—Pt1—N1—C1	63.0 (6)	Cl2—Pt1—N2—C16	-120.4 (9)
N2—Pt1—N1—C5	50.4 (7)	N1—Pt1—N2—C12	-117.8 (7)
Cl1—Pt1—N1—C5	-128.1 (7)	Cl2—Pt1—N2—C12	66.4 (7)
C5—N1—C1—C2	-3.3 (12)	C16—N2—C12—C13	-1.4 (14)
Pt1—N1—C1—C2	166.4 (7)	Pt1-N2-C12-C13	172.2 (6)
N1—C1—C2—C3	-0.3 (13)	N2-C12-C13-C14	-1.3 (13)
C1—C2—C3—C4	1.8 (14)	C12—C13—C14—C15	2.0 (12)
C2—C3—C4—C5	0.3 (14)	C13-C14-C15-C16	0.0 (12)
C1—N1—C5—C4	5.5 (12)	C12—N2—C16—C15	3.4 (14)
Pt1—N1—C5—C4	-163.1 (6)	Pt1-N2-C16-C15	-169.5 (7)
C1—N1—C5—C6	-174.5 (8)	C12—N2—C16—C17	-175.5 (8)
Pt1—N1—C5—C6	16.9 (11)	Pt1-N2-C16-C17	11.5 (13)
C3—C4—C5—N1	-4.0 (13)	C14—C15—C16—N2	-2.8 (13)
C3—C4—C5—C6	175.9 (8)	C14-C15-C16-C17	176.2 (8)
N1—C5—C6—C7	-130.7 (9)	N2-C16-C17-C18	-135.0 (9)
C4—C5—C6—C7	49.3 (12)	C15-C16-C17-C18	46.0 (11)
N1—C5—C6—C11	47.3 (12)	N2-C16-C17-C22	47.4 (12)
C4—C5—C6—C11	-132.7 (9)	C15—C16—C17—C22	-131.6 (8)
C11—C6—C7—C8	2.1 (14)	C22-C17-C18-C19	-0.1 (13)
C5—C6—C7—C8	-179.9 (8)	C16—C17—C18—C19	-177.7 (8)
C6—C7—C8—C9	-1.5 (14)	C17—C18—C19—C20	-1.1 (14)
C7—C8—C9—C10	1.2 (16)	C18-C19-C20-C21	1.5 (16)
C8—C9—C10—C11	-1.5 (15)	C19—C20—C21—C22	-0.5 (15)
C7—C6—C11—C10	-2.5 (15)	C20-C21-C22-C17	-0.7 (13)
C5—C6—C11—C10	179.5 (8)	C18-C17-C22-C21	1.1 (12)
C9—C10—C11—C6	2.1 (14)	C16-C17-C22-C21	178.7 (8)

Fig. 1

